| 일 | 월 | 화 | 수 | 목 | 금 | 토 | 
|---|---|---|---|---|---|---|
| 1 | ||||||
| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 
| 9 | 10 | 11 | 12 | 13 | 14 | 15 | 
| 16 | 17 | 18 | 19 | 20 | 21 | 22 | 
| 23 | 24 | 25 | 26 | 27 | 28 | 29 | 
| 30 | 
- 데이터분석시각화
 - python데이터분석
 - sql따라하기
 - 주피터노트북맷플롯립
 - python수업
 - SQL수업
 - 주피터노트북
 - 파이썬데이터분석주피터노트북
 - 파이썬크롤링
 - SQL
 - matplotlib
 - 판다스데이터분석
 - SQLSCOTT
 - 맷플롯립
 - 파이썬데이터분석
 - 파이썬시각화
 - 판다스그래프
 - 파이썬
 - python알고리즘
 - sql연습
 - 수업기록
 - 주피터노트북데이터분석
 - 팀플기록
 - 파이썬알고리즘
 - 파이썬수업
 - 파이썬차트
 - Python
 - 주피터노트북그래프
 - 주피터노트북판다스
 - sql연습하기
 
- Today
 
- Total
 
목록pythonalgorithm (3)
IT_developers
알고리즘이란 ? 어떤 일을 하기 위한 명령의 집합 문제 해결 방법을 추상화하여 각 절차를 논리적으로 기술해 놓은 것 어떤 문제를 해결하기 위한 절차나 방법 알고리즘 복잡도 Complexity 어떤 알고리즘이 문제를 풀기 위해 해야하는 계산이 얼마나 복잡한가? 알고리즘의 성능을 객관적으로 평가하는 기준 시간복잡도(time complexity) : 실행 횟수로 판단 공간복잡도(space complexity) : 기억공간과 파일 공간의 사용량 빅오 표기법 ( Big O Notation) 알고리즘이 얼마나 빠른지 표시하는 방법 입력 데이터 크기 증가할 때 알고리즘 연산 시간(횟수)의 증가 방식 연산의 횟수를 비교함 O(n) : 계산 복잡도 O : 빅 O n : 연산 횟수 O(1) : 입력 크기 n과 계산 복잡도..
알고리즘이란 ? 어떤 일을 하기 위한 명령의 집합 문제 해결 방법을 추상화하여 각 절차를 논리적으로 기술해 놓은 것 어떤 문제를 해결하기 위한 절차나 방법 알고리즘 복잡도 Complexity 어떤 알고리즘이 문제를 풀기 위해 해야하는 계산이 얼마나 복잡한가? 알고리즘의 성능을 객관적으로 평가하는 기준 시간복잡도(time complexity) : 실행 횟수로 판단 공간복잡도(space complexity) : 기억공간과 파일 공간의 사용량 빅오 표기법 ( Big O Notation) 알고리즘이 얼마나 빠른지 표시하는 방법 입력 데이터 크기 증가할 때 알고리즘 연산 시간(횟수)의 증가 방식 연산의 횟수를 비교함 O(n) : 계산 복잡도 O : 빅 O n : 연산 횟수 O(1) : 입력 크기 n과 계산 복잡도..
알고리즘이란 ? 어떤 일을 하기 위한 명령의 집합 문제 해결 방법을 추상화하여 각 절차를 논리적으로 기술해 놓은 것 어떤 문제를 해결하기 위한 절차나 방법 알고리즘 복잡도 Complexity 어떤 알고리즘이 문제를 풀기 위해 해야하는 계산이 얼마나 복잡한가? 알고리즘의 성능을 객관적으로 평가하는 기준 시간복잡도(time complexity) : 실행 횟수로 판단 공간복잡도(space complexity) : 기억공간과 파일 공간의 사용량 빅오 표기법 ( Big O Notation) 알고리즘이 얼마나 빠른지 표시하는 방법 입력 데이터 크기 증가할 때 알고리즘 연산 시간(횟수)의 증가 방식 연산의 횟수를 비교함 O(n) : 계산 복잡도 O : 빅 O n : 연산 횟수 O(1) : 입력 크기 n과 계산 복잡도..